Topic Modeling for Analysis of Big Data Tensor Decompositions



Publication Source: SPIE Proceedings Volume 10652, Disruptive Technologies in Information Sciences; 1065208 (2018), doi: 10.1117/12.2306933

Tensor decompositions are a class of algorithms used for unsupervised pattern discovery. Structured, multidimensional datasets are encoded as tensors and decomposed into discrete, coherent patterns captured as weighted collections of high-dimensional vectors known as components. Tensor decompositions have recently shown promising results when addressing problems related to data comprehension and anomaly discovery in cybersecurity and intelligence analysis. However, analysis of Big Data tensor decompositions is currently a critical bottleneck owing to the volume and variety of unlabeled patterns that are produced. We present an approach to automated component clustering and classi fication based on the Latent Dirichlet Allocation (LDA) topic modeling technique and show example applications to representative cybersecurity and geospatial datasets.
 
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Google Scholar    Article

Algorithms and Data Structures to Accelerate Network Analysis (Extended Version)



Publication Source: Elsevier: Future Generation Computer Systems Volume 86, September 2018

As the sheer amount of computer generated data continues to grow exponentially, new bottlenecks are unveiled that require rethinking our traditional software and hardware architectures. In this paper, we present five algorithms and data structures (long queue emulation, lockless bimodal queues, tail early dropping, LFN tables, and multiresolution priority queues) designed to optimize the process of analyzing network traffic. We integrated these optimizations on R-Scope, a high performance network appliance that runs the Bro network analyzer, and present benchmarks showcasing performance speed-ups of 5X at traffic rates of 10 Gbps.
Google Scholar    Article

Methods and Apparatus for Data Transfer Optimization



Publication Source: Patent US9858053B2

Methods, apparatus and computer software product for optimization of data transfer between two memories includes determining access to master data stored in one memory and/or to local data stored in another memory such that either or both of the size of total data transferred and the number of data transfers required to transfer the total data can be minimized. The master and/or local accesses are based on, at least in part, respective structures of the master and local data.
Google Scholar    Article

Methods and Apparatus for Automatic Communication Optimizations in a Compiler Based on a Polyhedral Representation



Publication Source: Patent US9830133B1

Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least one local memory unit that allows for data reuse opportunities. The first custom computing apparatus optimizes the code for reduced communication execution on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Google Scholar    Article

Efficient Packet Forwarding Using Cyber-Security Aware Policies



Publication Source: Patent US9798588B1

For balancing load, a forwarder can selectively direct data from the forwarder to a processor according to a loading parameter. The selective direction includes forwarding the data to the processor for processing, transforming and/or forwarding the data to another node, and dropping the data. The forwarder can also adjust the loading parameter based on, at least in part, feedback received from the processor. One or more processing elements can store values associated with one or more flows into a structure without locking the structure. The stored values can be used to determine how to direct the flows, e.g., whether to process a flow or to drop it. The structure can be used within an information channel providing feedback to a processor.
Google Scholar    Article

1 2 3 4 5 20