Enhancing Network Visibility and Security Through Tensor Analysis



Publication Source: The 4th International Workshop on Innovating the Network for Data Intensive Science (INDIS) 2017, Denver, CO, USA. (To Appear)

The increasing size, variety, rate of growth and change, and complexity of network data has warranted advanced network analysis and services. Tools that provide automated analysis through traditional or advanced signature-based systems or machine learning classifiers suffer from practical difficulties. These tools fail to provide comprehensive and contextual insights into the network when put to practical use in operational cyber security. In this paper, we present an effective tool for network security and traffic analysis that uses high-performance data analytics based on a class of unsupervised learning algorithms called tensor decompositions. The tool aims to provide a scalable analysis of the network traffic data and also reduce the cognitive load of network analysts and be network-expert-friendly by presenting clear and actionable insights into the network.
In this paper, we demonstrate the successful use of the tool in two completely diverse operational cyber security environments, namely, (1) security operations center (SOC) for the SCinet network at SC16 - The International Conference for High Performance Computing, Networking, Storage and Analysis and (2) Reservoir Labs’ Local Area Network (LAN). In each of these environments, we produce actionable results for cyber security specialists including (but not limited to) (1) finding malicious network traffic involving internal and external attackers using port scans, SSH brute forcing, and NTP amplification attacks, (2) uncovering obfuscated network threats such as data exfiltration using DNS port and using ICMP traffic, and (3) finding network misconfiguration and performance degradation patterns.

Article

Algorithms and Data Structures to Accelerate Network Analysis



Publication Source: The 4th International Workshop on Innovating the Network for Data Intensive Science (INDIS) 2017, Denver, CO, USA. (To Appear)

As the sheer amount of computer generated data continues to grow exponentially, new bottlenecks are unveiled that require rethinking our traditional software and hardware architectures. In this paper, we present five algorithms and data structures (long queue emulation, lockless bimodal queues, tail early dropping, LFN tables, and multiresolution priority queues) designed to optimize the process of analyzing network traffic. We integrated these optimizations on R-Scope, a high performance network appliance that runs the Bro network analyzer, and present benchmarks showcasing performance speed-ups of 5X at traffic rates of 10 Gbps.
Article

Polyhedral Optimization of TensorFlow Computation Graphs



Publication Source: The 6th Workshop on Extreme-scale Programming Tools (ESPT-2017) at The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17)

We present R-Stream·TF, a polyhedral optimization tool for neural network computations. R-Stream·TF transforms computations performed in a neural network graph into C programs suited to the polyhedral representation and uses R-Stream, a polyhedral compiler, to parallelize and optimize the computations performed in the graph. R-Stream·TF can exploit the optimizations available with R-Stream to generate a highly optimized version of the computation graph, specifically mapped to the targeted architecture. During our experiments, R-Stream·TF was able to automatically reach performance levels close to the hand-optimized implementations, demonstrating its utility in porting neural network computations to parallel architectures.

Article

Memory-efficient Parallel Tensor Decompositions



Publication Source: 2017 IEEE High Performance Extreme Computing Conference (HPEC '17), Waltham, MA, USA. [Best Paper Award Winner]

Tensor decompositions are a powerful technique for enabling comprehensive and complete analysis of real-world data. Data analysis through tensor decompositions involves intensive computations over large-scale irregular sparse data. Optimizing the execution of such data intensive computations is key to reducing the time-to-solution (or response time) in real-world data analysis applications. As high-performance computing (HPC) systems are increasingly used for data analysis applications, it is becoming increasingly important to optimize sparse tensor computations and execute them efficiently on modern and advanced HPC systems. In addition to utilizing the large processing capability of HPC systems, it is crucial to improve memory performance (memory usage, communication, synchronization, memory reuse, and data locality) in HPC systems. In this paper, we present multiple optimizations that are targeted towards faster and memory-efficient execution of large-scale tensor analysis on HPC systems. We demonstrate that our techniques achieve reduction in memory usage and execution time of tensor decomposition methods when they are applied on multiple datasets of varied size and structure from different application domains. We achieve up to 11x reduction in memory usage and up to 7x improvement in performance. More importantly, we enable the application of large tensor decompositions on some important datasets on a multi-core system that would not have been feasible without our optimization.

Article

A Quantitative and Qualitative Analysis of Tensor Decompositions on Spatiotemporal Data



Publication Source: 2017 IEEE High Performance Extreme Computing Conference (HPEC '17), Waltham, MA, USA.

With the recent explosion of systems capable of generating and storing large quantities of GPS data, there is an opportunity to develop novel techniques for analyzing and gaining meaningful insights. In this paper we examine the application of tensor decompositions, a high-dimensional data analysis technique, to georeferenced data sets. Guidance is provided on fitting spatiotemporal data into the tensor model and analyzing the results. We find that tensor decompositions can provide insight and that future research into spatiotemporal tensor decompositions for pattern detection, clustering, and anomaly detection is warranted.
Article

1 2 3 14